
Multidimensional maps 

The Mandelbrot set is based on 𝑧 → 𝑧2 + 𝑐. With 𝑧𝑘 = 𝑥𝑘 + 𝑖𝑦𝑘 and 𝑐 = 𝑐𝑥 + 𝑖𝑐𝑦 this can be expressed as: 

{ 
𝑥𝑘+1 = 𝑥𝑘

2 − 𝑦𝑘
2 + 𝑐𝑥

𝑦𝑘+1 = 2𝑥𝑘𝑦𝑘 + 𝑐𝑦
      Some other 2-dimensional ‘Mandelbrot sets’, based on other maps are: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Stability analysis 

The general form of a multidiomnensional system in 𝑛 real dimensions: 

{
 
 

 
 𝑥1(𝑘 + 1) = 𝑓1(𝑥1(𝑘), 𝑥2(𝑘), … , 𝑥𝑛(𝑘))

𝑥2(𝑘 + 1) = 𝑓2(𝑥1(𝑘), 𝑥2(𝑘),… , 𝑥𝑛(𝑘))

⋮
𝑥𝑛(𝑘 + 1) = 𝑓𝑛(𝑥1(𝑘), 𝑥2(𝑘), … , 𝑥𝑛(𝑘))

 or 𝒓𝑘+1 = 𝒇(𝒓𝑘) 

For a given initial value 𝒓0 the dynamics of the iteration can result in a limiting behavior that is 

• A fixed point 𝒓∗ = 𝒇(𝒓∗) 

• Periodic 𝒓 = 𝒇𝑁(𝒓) 

• Quasiperiodic Two or more incommensurable periods, Ex. Periodic in 𝑥1 and 𝑥2 but not in (𝑥1, 𝑥2) 

• Chaotic Orbits with exponential separation 

𝑧 → 𝑧4 + 𝑐 𝑧 → 𝑧6 + 𝑐 

𝑧 → 𝑧2 + 0.19𝑧3 + 𝑐 

𝑧 → 𝑧𝑑 + 𝑐 with 𝑑: 0 → 8  

𝑧 → −𝑖𝑐𝑧5 + 1 

{ 
𝑥𝑘+1 = 𝑥𝑘

2 − 𝑦𝑘
2 + 𝑥𝑘𝑦𝑘 + 𝑐𝑥

𝑦𝑘+1 = 𝑥𝑘𝑦𝑘 + 𝑐𝑦
 

   

   ↔ 

Multibrot.gif 

Julia set for 𝑧 → (1 − 𝑧3/6)/(𝑧 − 𝑧2)2 + 𝑐 

http://pmprojects.net/Nonlinearity/Multibrot.gif


Let two trajectories start close together  𝒓0 and 𝒓̃0 = 𝒓0 + 𝛿𝒓0 with a small difference |𝛿𝒓0| ≪ 1. 

The one-dimensional case 𝛿𝑥𝑘+1 ≈ 𝑓
′(𝑥𝑘) ⋅ 𝛿𝑥𝑘 will be generalized to: 

𝛿𝒓𝑘+1 ≈ 𝑫𝒇(𝒓𝑘) ⋅ 𝛿𝒓𝑘 where 𝑫𝒇(𝒓𝑘) is the Jacobian matrix 𝑫𝒇 evaluated at 𝒓𝑘. 

𝑫𝒇 = (

𝜕𝑓1/𝜕𝑥1 𝜕𝑓1/𝜕𝑥2 … 𝜕𝑓1/𝜕𝑥𝑛
𝜕𝑓2/𝜕𝑥1 𝜕𝑓2/𝜕𝑥2 … 𝜕𝑓2/𝜕𝑥2

⋮ ⋮ ⋱ ⋮
𝜕𝑓𝑛/𝜕𝑥1 𝜕𝑓𝑛/𝜕𝑥2 … 𝜕𝑓𝑛/𝜕𝑥𝑛

) 

In two dimensions after a change of variables that diagonalizes 𝑫𝒇 with eigenvectors 𝒗𝑘 and eigenvalues ℎ̃𝑘: 

(
𝛿𝑥′1(𝑘 + 1)

𝛿𝑥′2(𝑘 + 1)
) = (

ℎ̃1 0

0 ℎ̃2
) (
𝛿𝑥′1(𝑘)

𝛿𝑥′2(𝑘)
)  →  

For a general pertubation
of 𝜀𝑘 along  𝒗𝑘

  𝛿𝒓𝑘 =∑𝜀𝑖(ℎ̃𝑖)
𝑘
𝒗𝑖

𝑛

𝑖=1

  (∗) 

A coplication here is that the eigenvectors and eigenvalues will vary along the trajectory for non-linear 

iterations that have derivatives that are not constant. 

(∗) can be used to determine the stability of a fixed point. With several directions there can be different stability 

properties along different directions. Stability is decided by the largest eigenvalue, labelled ℎ̃1.  

 

 

 

 

 

 

 

 

 

 

Lyapunov exponents 

Derivation of Lyapunov exponents is a bit tricky since the eigendirections change with each iteration in the 

(𝑥1, 𝑥2, … 𝑥𝑛)-space. Assume exponential expansion or contraction of 𝛿𝒓0 over 𝑁 iterations |𝛿𝒓𝑁|~|𝛿𝒓0|𝑒
𝜆𝑁. 

 

 

 

 

 

 

 

An infinetisimal circle is transormed into an ellipse, a sphere becomes an ellipsoid etc. The stretchings and 

compressions define a largest Lyapunov exponent 𝜆1. 

If 𝜆1 > 1 there will be chaosin the long run where separation of points in (𝑥1, 𝑥2, … , 𝑥𝑛 )-space will be 

determined by exponential expansion in this direction. 

Type of fixed point Condition 

Stable หℎ̃1ห < 1 

Unstable หℎ̃1ห > 1 

Undecided หℎ̃1ห = 1 

 

For complex conjugate pairs of eigenvalues, as can happen 

with a real Jacobian, the table still hold but the conjugate 

pairs หℎ̃ห𝑒±𝑖𝜑 will result in ingoing or outgoing spirals. 

The left example has one stable and one unstable direction, 

The right example is stable with complex conjugate 

eigenvalues with absolute value less than one resulting 

in an ingoing spiral towards a fixpoint. 



{ 
𝑥𝑛+1 = 1 − 𝑎𝑥𝑛

2 + 𝑦𝑛
𝑦𝑛+1 = 𝑏𝑥𝑛

 

 

Strange attractor for 

classical Hénon map 

with parameter values 

 ቄ
𝑎 = 1.4
𝑏 = 0.3

 

Hénon map 

Books and studies of non-linearity and chaos often use the Hénon map as an example of a system with chaotic 

and fractal properties. It’s a discrete dynamical system 𝒓𝑛+1 = 𝑓(𝒓𝑛) with:  

 

 

 

 

 

 

 

 

 

 

 

The limiting orbit can be periodic, intermittent or chaotic. A dynamical system is said to be intermittent when it 

alternates phases of periodic and chaotic dynamics. The classical Henon map with 𝑎 = 1.4 and 𝑏 = 0.3 will 

depending on the initial value 𝒓0 either diverge to infinity or approach a set called the Hénon strange attractor, 

a fractal and Cantor-like set with Hausdorff dimension 1.26. The attractor contains unstable periodic orbits. 

 

The map can be decomposed into 3 steps: 

a bend → a contraction in 𝑥 → a reflection in 𝑥 = 𝑦. 

(
𝑥
𝑦) → (

𝑥
1 − 𝑎𝑥2 + 𝑦) → (

𝑏𝑥
1 − 𝑎𝑥2 + 𝑦

) → (1 − 𝑎𝑥
2 + 𝑦

𝑏𝑥
) 

The Cantor-like structure is a consequence of the repeated 

stretching and folding operations that are an invariant feature 

of the limiting strange attractor. 

 

The Henon map is not very old, it is from 1976, a result of studies 

that tried to simplify the Lorentz attractor with Poincaré maps. 

The Lorentz attractor was discovered in the 60´s in connection with 

ordinary differential equation used to study weather phenomena. 

The attractor gave birth to the term ‘Butterfly effect’, due to its 

appearance and the saying that a butterfly can cause a storm when 

flapping its wings based on sensitive dependence on initial conditions. 

  



Cat map with 

horizontal shear followed by 

vertical shear 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cat map 

Another useful 2-dimensional map is Arnold’s cat map named after Vladimir Arnold, a Russian mathematician 

who studied it in the 1960’s. The map is often illustrated by its effect on the image of a cat in [0,1] × [0,1]. 

Γ: 
𝑥𝑛+1 = 𝑥𝑛 + 𝑦𝑛 mod 1
𝑦𝑛+1 = 𝑥𝑛 + 2𝑦𝑛 mod 1

 or (
𝑥
𝑦) ↷ 𝑇 (

𝑥
𝑦)  mod 1 with 𝑇 = (

1 1
1 2

) = (
1 0
1 1

) (
1 1
0 1

) 

The map shears the image of the unit square [0,1]2  

and rearranges the pieces back into the unit square. 

 

Horizontal shear
(shear factor ℎ)

  𝑇ℎ = (
1 ℎ
0 1

)  { 
𝑥 → 𝑥 + ℎ ⋅ 𝑦
𝑦 → 𝑦

  

 
Vertical shear
(shear factor 𝑣)

 𝑇𝑣 = (
1 0
𝑣 1

)  ቄ 
𝑥 → 𝑥
𝑦 → 𝑦 + 𝑣 ⋅ 𝑥  

  

 

  



The mod operator makes it natural to view the map as acting on a 

torus with 𝑥 and 𝑦 being angular variables where 1 is a full turn. 

Mathematically a torus is a quotient space, 𝕋2 = ℝ2/ℤ2. 

𝕋2 is a square where opposite sides have been identified. 

Repeated application of the cat map on a cat image in 124 × 124 pixels results in: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The conditions of the Poincaré recurrence theorem are fulfilled. It states that after a certain number of 

iterations a dynamical system will come arbitrarily close to (in a continuous system) or will return to exactly the 

same state (in a discrete system) as the initial state. The number of iterations depends on 𝑁. 

 

 

 

 

 

 

Arnold’s discretized cat map returns after 306 iterations when applied to a 289 × 289 pixel image.  

For an image of 𝑁 × 𝑁 pixels where each pixel is represented by rational coordinates 

(𝑥/𝑁, 𝑦/𝑁) and 𝑥, 𝑦 ∈ {0,1,2, …𝑁 − 1} you can use Arnold’s discrete cat map:  

Γ𝑁 ∶  ℤ𝑁
2 → ℤ𝑁

2   where  (
𝑥𝑛+1
𝑦𝑛+1

) = (
1 1
1 2

) (
𝑥𝑛
𝑦𝑛
) (mod 𝑁) 𝑥𝑛 , 𝑦𝑛 ∈ ℤ𝑁 

Each iteration reshuffles the pixels in the 𝑁 × 𝑁 square. 

𝟎 𝟏 𝟐 𝟑 𝟒 

𝟓 𝟔 𝟕 𝟖 𝟗 

𝟏𝟎 𝟏𝟏 𝟏𝟐 𝟏𝟑 𝟏𝟒 

𝟏𝟓 

𝑛 = 0 𝑛 = 1 𝑛 = 2 𝑛 = 6 𝑛 = 153 𝑛 = 306 



The first reappearance of the original 𝑁 × 𝑁 image under the discretized cat map with 𝑇 = (
1 1
1 2

) is the 

smallest 𝑛 such that 𝑇𝑛 ≡ (
1 0
0 1

)  mod 𝑁, it’s the minimal period of Arnold’s discrete cat map modulo 𝑵. 

The reappearance number is denoted Π𝑇(𝑁), Π𝑇(124) = 15 and Π𝑇(289) = 306 

The recurrence number is connected to the Fibonacci sequence 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 with 𝐹0 = 0 and 𝐹1 = 1: 

𝑛 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
𝐹𝑛 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946 17711 28657

 

 

𝐹 = (
0 1
1 1

) = (
𝐹0 𝐹1
𝐹1 𝐹2

)  →  𝐹𝑛 = (
𝐹𝑛−1 𝐹𝑛
𝐹𝑛 𝐹𝑛+1

)   𝐹2 = 𝑇 →  𝑇𝑛 = (
𝐹2𝑛−1 𝐹2𝑛
𝐹2𝑛 𝐹2𝑛+1

) 

Π𝑇(𝑁) is the smallest 𝑛 such that {
𝐹2𝑛−1 ≡ 1  mod 𝑁
    𝐹2𝑛 ≡ 0  mod 𝑁

 

The Fibonacci sequence modulo 𝑁 repeats after a certain 

number of steps called the Pisano period 𝜋(𝑁). The number 

is named after Leonardo Pisano, Italian mathematician who 

lived 1170-1250. He is more known known as Fibonacci. 

Π𝑇(𝑁) is exactly half the Pisano period for all 𝑁 > 3. 

 

Fibonacci sequence mod 124, 𝜋(124) = 30: 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 1 1 2 3 5 8 13 21 34 55 89 20 109 5 114 119 109 104 89 69 34 103 13 116 5 121 2 123 1 0 1

 

 
 

The period can be calculated by prime factorization of 𝑁 = 𝑝1
𝑘1𝑝2

𝑘2 ⋅ … 𝑝𝑚
𝑘𝑚. 

ΠT(𝑁) = LCM(ΠT(𝑝1
𝑘1), ΠT(𝑝2

𝑘2), … , ΠT(𝑝𝑚
𝑘𝑚)) 

Π𝑇(124) = LCM(Π𝑇(4), Π𝑇(31)) = LCM(3,15) = 15 

 

Other phenomena connected to the discretized cat map is the appearance of ghosts and miniatures. 

 

 

 

 

 

 

 

 

 

 

 

 

  

The first 10 000 Pisano periods 

𝑇3 mod 4 = (
1 0
0 1

) 

𝑇15 mod 31 = (
1 0
0 1

) 

 

 

Iteration of image with Π(768) = 192 and ghosts at 𝑛 = 96  Ghosts occurring after 70 iterations on an image of 2862 pixels 

Miniatures after 34 iterations on a cat map under 

iterations with 𝑇 = (
1 2
2 5

) on a 289×289 image. 

Miniatures occur when the absolute values of 

elements of 𝑇𝑛 mod 𝑁 are small compared to 𝑁. 



 

The cat map matrix 𝑇 = (
1 1
1 2

) in 𝒓𝑛+1 = 𝑇𝒓𝑛 mod 1 is symmetric with det(𝑇) = 1 which makes it area-

preserving and with orthogonal eigenvectors with product 1. 

A more general class of cat maps are given by 𝑇 = (
𝑎 𝑏
𝑐 𝑑

) with 𝑎𝑑 − 𝑏𝑐 = 1. The maps are categorized as: 

• Hyperbolic if one eigenvalue is large than one and the second is less than one. 

• Parabolic if the eigenvalues satisfy 𝜆1 = 𝜆2 = 1 

• Elliptic if 𝜆1 and 𝜆2 are complex conjugate. 

The eigenvectors of 𝑇 = (
1 1
1 2

) are  

Arnold’s cat map is hyperbolic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The cat map (hyperbolic and continuous version) illustrates a property 

called mixing. A typical example in everyday life is when two different 

colors of paint are stirred together. 

Chaotic systems can be classified after their degree of randomness. 

Hierarchy of chaos, in increasing degree of randomness: 

1. Recurrent The trajectory returns to a given neighborhood of a point an infinite number of times. 

2. Ergodic system Time averages can be replaced by averages over phase space. 

3. Mixing Any area element will eventually spread over the whole phase space 

4. K-system Measure preserving automorphism on probability space obeying Kolomogorov 1-0 law. 

5. C-system All trajectories diverge exponentially in every part of phase space. (ex. Arnold’s cat) 

6. Bernoulli system As random as the toss of a coin, can be described by Markov chain. (ex. Random walk) 

  

𝒗1 = (1,
1+√5

2
) with eigenvalue 𝜆1 =

3+√5

2
≈ 2.62 

𝒗2 = (1,
1−√5

2
) with eigenvalue 𝜆2 =

3−√5

2
≈ 0.38 

 

𝒗1 ⋅ 𝒗2 = 0 

𝜆1 ⋅ 𝜆2 = 1 

Stretching by factor 𝜆1 along eigenvector 𝒗1 

Compression along eigenvector 𝒗2 by factor 𝜆2 

Hyperbolic case 

Parabolic case 

Extension of image preserved in one direction. 

Elliptic case 

case Rotation of image under preserved form. 

1 ⊂ 2 ⊂ 3 ⊂ 4 ⊂ 5 ⊆ 6 
? 



Horseshoe map 

Newton’s law of gravitation gives a system of differential equations for the time evolution 𝒓𝑖(𝑡) of a number of 

objects moving under their mutual gravitational attraction. For two objects the paths are given by easy formulas 

with simple orbits or trajectories. For three objects the paths are complicated and unpredictable unless you 

iterate the equations forward one step at a time. There are no closed for formulas for their solution. The French 

mathematician Henri Poincaré worked on the 3-body problem and tried to characterize the motion. He found 

chaos in the solution of nonlinear differential equations and won a big prize for it in 1887. 

 It took a long time to get order in the chaos that Poincaré discovered. A big step was taken by Stephen Smale 

in the 1960’s when he derived a geometric view to understand the complicated patterns and motions in 

nonlinear dynamical systems. His invention is known as Smale’s horseshoe map. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Take a square with semicircles on top and bottom, squeeze the square       , stretch it   and fold it     back on top 

of the original area. Repeat the procedure of squeeze, stretch and fold repeatedly. 

 

 

 

 

 

 

 

 

 

 

 

 

Which points have infinite forward and infinite backward orbits contained in 𝑆? 

They must lie in the intersection (𝐻1𝑎 ∪ 𝐻1𝑏) ∩ (𝑉1𝑎 ∩ 𝑉1𝑏), the 4 chequered squares. 

Follwing the iteration gives a gives a series of diminishing 

horisontal 𝐻𝑛 = 𝑓𝑛(𝑆) ∩ 𝑆 and vertical 𝑉𝑛 = 𝑓
−𝑛(𝐻𝑛) stripes. 

The intersection of 𝐻𝑛 and 𝑉𝑛 converges to an invariant set 

Λ = lim
𝑛→∞

𝐻𝑛 ∩ 𝑉𝑛 of points with Cantor-like distribution in 

both vertical and horizontal directions.  

𝑓−2 𝑓−1 

𝑓 𝑓 

S: square area 

D: square area + 

     semicircles 

D 

S 

• 

• 

𝑥0 

𝑥1 

• 
𝑥−1 

A point 𝑥0 ∈ 𝐷 is moved to 𝑥1 = 𝑓(𝑥0) and then to 𝑓2 = 𝑓2(𝑥0) by the 

horseshoe map 𝑓 in an infinite sequence, the forward orbit of 𝑥0: 𝑥0, 𝑥1𝑥2, …. 

There is also a backward orbit but not all points in 𝐷 have an inverse image 𝑥−1 

which might have an inverse image 𝑥−2 leading to a finite 

or infinite backward orbit of 𝑥0: 𝑥−1, 𝑥−2, 𝑥−3, … 

 

𝐻1𝑏 

𝐻1𝑎 

𝑉1𝑎 𝑉1𝑏 Just as some points in 𝑆 don’t have an inverse there are 

some points in 𝑆 that are mapped to regions outside 𝑆. 

Points that are mapped into 𝑆 lie in two horizontal strips 

𝐻0 and 𝐻1. These strips are mapped into two vertical strips 

𝑉0 and 𝑉1, 𝑓(𝐻1𝑎 ∪ 𝐻1𝑏) = 𝑉1𝑎 ∪ 𝑉1𝑏. 



There is a symbolic dynamic of how points in the set Λ are mapped into each other. The dynamics help to 

understand the dynamics of complex nonlinear dynamical systems. 

𝑥0 ∈ Λ ⇒ 𝑥𝑛, 𝑥𝑛+1 ∈ Λ and 𝑥𝑛+1 must lie in either 𝑉1𝑎 or 𝑉1𝑏 which means that 𝑥𝑛 must lie in 𝐻1𝑎 or 𝐻1𝑏. This 

is true for every 𝑛, both in the forward and backward orbit. Write down a 0 of 𝑥𝑛 is in 𝐻1𝑎 and 1 if 𝑥𝑛 is in 𝐻1𝑏. 

This gives a bi-infinite sequence of 0s and 1s …𝑎−2𝑎−1. 𝑎0𝑎1𝑎2… which corresponds one-to-one with points in 

Λ. Every point in Λ has a unique bi-infinite sequence and vice versa. 

The horse shoe map 𝑓 on 𝑥 ∈ Λ corresponds to shifting the dot in the bi-infinite sequence one step. Numbers 

in Λ that are close to each other will agree in their sequences for a large number of places to the right and left of 

the dot. The closer they are the more places agree.  

Attractors 

An attractor is a set of states toward which a dynamical system evolve, a form of limit set for a system that can 

be discrete 𝒓𝑡+1 = 𝑓(𝒓𝑡) or continuous 𝒓̇ = 𝑓(𝒓). The attractor is stable in the sense that when 𝒓 gets close 

enough to the attractor it remains close. 

The attractor can be a limiting point or cycle, a curve or a manifold but it can also be a complicated geometrical 

structure in 𝑛-dimensional space with non-integer Hausdorff dimension, a strange attractor. 

In the discrete case the system can be described by a difference equation. In the continuous case the description 

is based on differential equations. These are handled in the next section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Attractors (𝐴) are subsets of the phase space to the dynamical system. They have a basin of attraction 𝐵(𝐴) in 

which every orbit approaches the attractor and which contain an open set containing the attractor. 

Strange attractors like the Lorentz attractor where first thought to be exceptional and fragile. Stephen Smale 

showed with his horseshoe map that strange attractors can be robust and that they have a Cantor-like structure, 

which means that there are intersections of the attractor with suitable planes that are totally disconnected and 

noncountable. 

Attractors can be fixed points that maps to themselves like the end position of a damped pendulum. The 

pendulum in the unstable upward position is an unstable equilibrium and therefore not an attractor, it’s a 

repeller. 

  

De Jong attractor 

{
𝑥𝑡+1 = sin(𝑎𝑦𝑡) − cos(𝑏𝑥𝑡)

𝑦𝑡+1 = sin(𝑐𝑥𝑡) − cos(𝑑𝑦𝑡)
 

𝑎 = 2.01 𝑏 = −2.53 

𝑐 = 1.61 𝑑 = −0.33 

Hénon attractor 

{ 
𝑥𝑡+1 = 1 − 𝑎𝑥𝑡

2 + 𝑦𝑡
𝑦𝑡+1 = 𝑏𝑥𝑡

 

𝑎 = 1.4 𝑏 = 0.3 

Lorentz attractor 

ቐ 

𝑥̇ = 𝜎(𝑦 − 𝑥)

𝑦̇ = 𝑥(𝜌 − 𝑧) − 𝑦
𝑧̇ = 𝑥𝑦 − 𝛽𝑧

 

𝜌 = 28 𝜎 = 10 𝛽 = 8/3 

Rössler attractor 

൝ 

𝑥̇ = −𝑦 − 𝑧
𝑦̇ = 𝑥 + 𝑎𝑦
𝑧̇ = 𝑏 + 𝑧(𝑥 − 𝑐)

 

𝑎 = 0.1 𝑏 = 0.1 𝑐 = 14.0 

Discrete 
Continuous 



Discrete systems can have limit cycles that are periodic orbits 

𝒓1 → 𝒓2 → ⋯ → 𝒓𝑛 like the 3-cycle in a Julia set to 𝑧 → 𝑧2 + 𝑐 

where each iteration with 𝑧0 ∈ 𝐵(𝐴) leads to an asymptotic 

convergence to the 3-cycle. (Exception exist, non-hyperbolic). 

Picture shows basin of attraction to limit cycle consisting of 

three points. Staring in bulbs outside the 3 grey bulbs jump 

around in other bulbs before settling down in the inner trio and 

then stat convergence to the limit cycle. 

In the continuous case limit cycles can be in the form of closed loops. A clock pendulum with an energy feed 

that maintains a stable oscillation is an example. This is governed by a differential equation with an oscillating 

driving term 𝑥̈ + 𝐴(𝑥)𝑥̇ + 𝐵(𝑥) = 𝑓(𝑥, 𝑡). Other examples can be without driving terms like the Van der Pool 

oscillator with non-linear damping 𝑥̈ − 𝜇(1 − 𝑥2)𝑥̇ + 𝑥 = 0. A non-conservative system, the work done in 

moving a particle between two points depends on the path taken. The differential equation was produced to 

describes vacuum tubes. It’s an equation that describes self-sustaining oscillation where energy is removed 

from large oscillations and fed into small oscillations. 

 

 

 

 

 

In the caser of multiple frequencies in the limiting cycle and 

where the ratios of the frequencies are irrational the limit orbit 

takes place on a torus and the orbit will not be closed. 

The limit cycle will fill the torus and the attractor will be an 

𝑛-torus if there are 𝑛 frequencies that are incommensurate. 

Apart from the fixed point, limit cycle and limit torus there are the strange attractors with fractal geometry. 

Theses attractors are usually connected to chaotic dynamics with sensitive dependence on initial conditions and 

exponential separation. The system has stretch and fold properties that contain the attractor. 

A dynamic system with a strange attractor is locally unstable and globally unstable. Points on the attractor will 

diverge from each other but never depart from the attractor. 

 

 

 

 

 

 

 

 

 

 

5 basins of attraction in ℂ, in separate 

colors to find 5 roots to 𝑧5 = 1 with 

Newton’s method starting at 𝑧0 ∈ ℂ  

and iterating towards some solution. 

• 

• 
• 

Strange attractor of the Lorentz differential equation. 

Solutions 𝒓(𝑡) with some starting point 𝒓(𝑡0) outside 

the attractor will converge to the Lorentz attractor, a set 

in ℝ3 with fractal Hausdorff dimension 2.06 ± 0.01. 


